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Posterior quantity.

• Posterior quantity.

E [g(θ)|y ] =

∫
θ
g(θ)p(θ|y)dθ

– Posterior predictive distribution.
– Model checking. (Ch7)

• If the calculation of the posterior distribution is infeasible, how
to calculate posterior quantity.
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Monte Carlo Method

• Posterior quantity can be approximated by sampling from
posterior distribution.

E [g(θ)|y ] =

∫
θ
g(θ)p(θ|y)dθ ≈ 1

S

S∑
s=1

g(θ(s))

• Then, how to draw independent samples from posterior
distribution?
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Monte Carlo Methods

• Markov chain simulation (Markov chain Monte Carlo, MCMC)
• Gibbs sampling / Metropolis algorithm / Metropolis-Hastings

algorithm.
– The sampling is done sequentially, with the distribution of the

sampled draws depending on the last value drawn.
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Markov chain

• A sequence of random variables X 0,X 1, . . . is a Markov chain
if

p(X t |X 0, . . . ,X t−1) = p(X t |X t−1)

• p(X t |X t−1) is called as a transition probability(transition
kernel).

• If p(X t |X t−1) does not depend on t, then Markov chain is
called homogeneous.

• For a homogeneous Markov chain, we will denote transition
probability as p(y |x) = P(X 1 = y |X 0 = x)
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Stationary distribution

• For a homogeneous Markov chain with p(y |x),
a distribution π(y) which satisfies

π(y) =

∫
p(y |x)π(x)dx

is called a stationary distribution.

• A stationary distribution may not exist or may not be unique.

9



Example

• Suppose the space are (Rain, Sunny, Cloudy) and weather
follows a Markov process

• The transition probability

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5


• Suppose that today is sunny, π(0) = (0, 1, 0), what is the

expected weather two days later, or seven days?

π(2) = π(0)P2 = (0.375, 0.25, 0.375)

π(7) = π(0)P7 = (0.400024, 0.199951, 0.400024)
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Example

• After a sufficient amount of time, the expected weather
becomes independent of the initial value.

• The chain has reached a stationary distribution.

• Stationary distribution π∗

π∗ = π∗P = (0.4, 0.2, 0.4)

• We will consruct a Markov chain which has target distribution
(posterior distribution) as a stationary distribution.
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Ergodic Markov chains

• Ergodicity Theorem
– If a Markov chain is ergodic, then a unique stationary

distribution π∗ exists, which is independent of the initial state.

• Ergodic Markov chain
– irreducible/recurrent nonnull(positive)/aperiodic
– aperiodic and recurrent nonnull → existence of π.
– irreducible → uniqueness of π.
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MCMC(Markov chain Monte Carlo)

• The Monte Carlo Method.

E [g(θ)|y ] =

∫
θ
g(θ)p(θ|y)dθ ≈ 1

S

S∑
s=1

g(θ(s))

– Independent samples

• MCMC
– Construct irreducible, aperiodic, positive Markov chain with

stationary distribution p(θ|y).
– Simulate θ(1), θ(2), . . . from markov chain. Then:

1
S

S∑
s=1

g(θ(s))→ E [g(θ)|y ] as S →∞
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Markov chain simulations

• Gibbs sampler / Metropolis algorithm / Metropolis-Hasting
algorithm

• We denote samples at each iteration as θt , t = 0, 1, . . . ,

• For each t, θt is sampled from a certain transition distribution
Tt(θt |θt−1)

• The transition probability distributions must be constructed so
that Markov chain converges to a unique stationary
distribution, p(θ|y).

• A variety of Markov chain can be constructed.
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Gibbs sampler

• Useful in many multidimensional problems

• Alternating conditional sampling

• Generating samples from joint distribution is difficult, but
generating samples from condition distribution is easy.
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Gibbs sampler

• θ = (θ1, . . . , θd )

• Each θj could be a subvector of θ(dim ≥ 1)

• θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd )

• Drawing each subset of θ conditional on the value of all the
others.
• In each iteration t,

• p(θj |θt−1
−j , y)

17



Gibbs sampler

• Gibbs sampler
• For t = 1 to S

1 Generate θt
1 ∼ p(θ1|θ(t−1)

2 , . . . , θ
(t−1)
d , y)

2 Generate θt
2 ∼ p(θ2|θ(t)1 , θ

(t−1)
2 , . . . , θ

(t−1)
d , y)

3 · · ·
4 Generate θt

d ∼ p(θ2|θ(t)1 , . . . , θ
(t)
2 , y)

• This Markov chain has posterior distribution as a stationary
distribution.
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Example: Bivariate normal distribution

• Posterior distribution.(
θ1

θ2

)
| y ∼ N

((
y1

y2

)
,

(
1 ρ

ρ 1

))

• Conditional distribution

θ1 | θ2, y ∼ N
(
y1 + ρ (θ2 − y2) , 1− ρ2)

θ2 | θ1, y ∼ N
(
y2 + ρ (θ1 − y1) , 1− ρ2)
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Example: Bivariate normal distribution

• ρ = 0.8, (y1, y2) = (0, 0), four independent sequences started
at (±2.5,±2.5)
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Metropolis algorithm

• Draw values of θ from approximate distributions and
correctthose draws to better approximate the target
distribution.

• Random walk with an acceptance/rejection rule.

• Symmetric jumping distribution(proposal distribution)

• Tt(θt |θt−1) is a weighted version of Jt(θt |θt−1)
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Metropolis algorithm

1 Draw a staring point θ0, (p(θ0|y) > 0), from starting
distribution p0(θ)

2 For t = 1 to S

1 Sample a proposal θ∗ from a jumping distribution(proposal
distribution) at time t, J(θ∗|θt−1).(symmetric)

2 Calculate the ratio of the densities

r =
p(θ∗|y)

p(θt−1|y)

3 Set

θt =

{
θ∗ with probability min(r , 1)

θt−1 otherwise.
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Example: Bivariate unit normal density with normal jumping
kernel

• p(θ | y) = N(θ | 0, I ), where I is the 2× 2 identity matrix.

• Jt

(
θ∗ | θt−1) = N

(
θ∗ | θt−1, 0.22I

)
• r = N (θ∗ | 0, I ) /N

(
θt−1 | 0, I

)
• In Ch12, we discuss how to set the jumping scale to optimize

the efficiency of the Metropolis algorithm.
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The Markov simulation.

• Five simulation runs starting from different points.
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The sketch of the proof of the validity of the Metropolis al-
gorithm

• Why does the Metropolis algorithm work?

• First, it is shown that the simulated sequence is a Markov
chain with a unique stationary distribution.

• Second, The stationary distribution equals this target
distribution.
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The sketch of the proof of the validity of the Metropolis al-
gorithm

• Ergodicity is from random work.

• Need to show that the posterior distribution is the stationary
distribution of this Markov chain

• Consider starting the algorithm at time t − 1

• Any two such points θa, θb, drawn from p(θ|y) and labeled so
that p(θb|y) ≥ p(θa|y).
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The sketch of the proof of the validity of the Metropolis al-
gorithm

• Unconditional probabilty density of a transition form θa to θb is

p(θt−1 = θa, θ
t = θb) = p(θa|y)Jt(θb|θa)

• Unconditional probabilty density of a transition form θb to θa is

p
(
θt = θa, θ

t−1 = θb

)
= p (θb | y) Jt (θa | θb)

(
p (θa | y)

p (θb | y)

)
= p (θa | y) Jt (θb | θa)

• Since their joint distribution is symmetric, θt and θt−1 have
the same marginal distributions, and so p(θ|y) is the
stationary distribution of the Markov chain of θ
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The Metropolis-Hasting algorithms

• The Metropolis algorithm is a special case of the
Metropolis-Hasting algorithm.

• Asymmetric jumping distribution.

• r =
p(θ∗|y)/Jt(θ∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗)
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Using Gibbs and Metropolis as building blocks

• Gibbs: conditionally conjugate model

• Metropolis: not conditionally conjugate model.

• A general problem with conditional sampling algorithms is that
they can be slow when parameters are highly correlated in the
target distribution. (reparametriztion or more advanced
algorithms)
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A good jumping distribution.

• For any θ, it is easy to sample from p(θ∗|θ)

• Easy to compute the ratio r

• Each jump goes a reasonable distance in the parameter
space(otherwise the random walk moves too slowly.)

• The jumps are not rejected too frequently.
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Gibbs sampler & Metropolis-Hastings algorithm

• Gibbs sampler can be viewed as special case of the
Metropolis-Hastings algorithms

• Define iteration t to consist of a series of d steps.
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Gibbs sampler & Metropolis-Hastings algorithm

• Jumping distribution Jj ,t(·|·). ate step j of iteration t.

JGibbs
j ,t

(
θ∗ | θt−1) =

{
p
(
θ∗j | θ

t−1
−j , y

)
if θ∗−j = θt−1

−j

0 otherwise

• The ratio at jth step of iteration t is

r =
p (θ∗ | y) /JGibbs

j ,t

(
θ∗ | θt−1)

p (θt−1 | y) /JGibbs
j ,t (θt−1 | θ∗)

=
p (θ∗ | y) /p

(
θ∗j | θ

t−1
−j , y

)
p (θt−1 | y) /p

(
θt−1

j | θt−1
−j , y

)
=

p
(
θt−1
−j | y

)
p
(
θt−1
−j | y

)
≡ 1
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The basic method of inference

• Use the collection of all the simulated draws from p(θ|y) to
summarize the posterior quantity.
• Two challenges

– grossly unrepresentative of the target distribution.
– within sequence correlation.
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The basic method of inference

• Discarding early iterations(warm-up/burn-in) of simulations.

• Once approximate convergence has been reached, keeping
evert kth simulation draw from each sequence and discarding
the rest.(Thinning)

• Then, how to assess that the convergence has been reached?
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Assessing convergence

• Multiple chains with starting points dispersed throughout
parameter space.

– Stationary and mixing.
– Within- and between- variance of scalar estimands(posterior

quantity).
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Stationary and mixing

• Two challenges of monitoring convergence of iterative
simulations.

• Stationary and mixing.
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Monitoring scalar estimands

• All parameters in the model and any other quantities of
interest.

• it is often useful to monitor the value of the logarithm of the
posterior density.
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Assessing mixing using between and within sequence vari-
ances

• We denote interested scalar estimands as ψ

• For calculating between and within sequence variance, discard
the first half of each simulation chain as warm-up

• Split each into two same length of sequence.

• m: The twice number of chains

• n: The length of remained chain each chains

• Suppose we simulate 5 chains, each of length 1000, and then
m = 10, n = 250
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Assessing mixing using between and within sequence vari-
ances

• Between- and within sequence variances

B =
n

m − 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
,W =

1
m

m∑
j=1

s2
j

where ψ̄.j = 1
n

∑n
i=1 ψij , ψ̄.. = 1

m

∑m
j=1 ψ̄.j , and

s2
j = 1

n−1
∑n

i=1
(
ψij − ψ̄.j

)2
• We can estimate var(ψ | y)

v̂ar+(ψ | y) =
n − 1
n

W +
1
n
B
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Assessing mixing using between and within sequence vari-
ances

• v̂ar+(ψ | y) overestimates the marginal posterior variance
assuming the starting distribution is appropriately
overdispersed.

• W is an underestimate of var(ψ | y)

• W approaches var(ψ | y) as n→∞
• Potential scale reduction.

R̂ =

√
v̂ar(ψ | y)

W

which declines to 1 as n→∞
• If R̂ is high, further simulations may improve our inference.
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MCMC samples are dependent

• MCMC samples are dependent

• This does not effect the validity of inference on the posterior,
if samplers has time to explore the posterior distributions.

• Highly correlated MCMC samplers requires more samples to
produce the same level of Monte Carlo for an estimate
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Effective number of simulation draws

• Effective sample size is some sort of "exchange rate" between
dependent and independent samples.

• The number of effectively indepedent draws from the posterior
distribution that the Markov chain is equivalent to.

• The larger the better.

• They suggest running the simulation until neff is at least m

44



Effective number of simulation draws

• It is usual to compute effective sample size using the following
asymptotic formula for the variance of the average of a
correlated sequence.

lim
n→∞

mn var
(
ψ̄..
)

=

(
1 + 2

∞∑
t=1

ρt

)
var(ψ | y)

ρt is the autocorrelation of the sequence ψ at lag t.
• If the simulation draws were independent, the effective sample

size is mn
var
(
ψ̄..
)

=
1
mn

var(ψ | y)

• Then, in the presence of correlation the effective sample size is

neff =
mn

1 + 2
∑∞

t=1 ρt
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Effective number of simulation draws

• Compute the total variance using the v̂ar+(ψ | y)

• Estimate the correlations by first computing the variogram Vt

at each lag t

Vt =
1

m(n − t)

m∑
j=1

n∑
i=t+1

(ψi ,j − ψi−t,j )
2

• We then estimate the correlations by inverting the formula,
E (ψi − ψi−t)2 = 2 (1− ρt) var(ψ)

ρ̂t = 1− Vt

2v̂ar+

• We compute a partial sum, starting from lag 0 and continuing
the sum of autocorrelation estimates for two succesive lags
ρ̂2t′ + ρ̂2t′+1 is negative.

n̂eff =
mn

1 + 2
∑T

t=1 ρ̂t 46



Effective number of simulation draws

• This convergence diagnostic are based on means and
variances, therefore it is vulnerable to the posterior distribution
is far from Gaussian

• Using transformations before computing the potential scale
reduction factor R̂ and the effective sample size neff
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Example: hierarchical normal model

• Likelihood (yij)
J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
• Prior

– θj from normal distribution with unknown mean µ and
variance τ2

– (µ, log σ, log τ) ∝ τ

• Posterior

p(θ, µ, log σ, log τ | y) ∝ τ
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
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Example: hierarchical normal model

• Initialize (ch13.)
• Gibbs sampler

– The conditional distribution of each θj , normal
– The conditional distribution of µ, normal
– The conditional distribution of σ2, inverse gamma
– The conditional distribution of τ2, inverse gamma
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Example: hierarchical normal model

• Posterior

p(θ, µ, log σ, log τ | y) ∝ τ
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
• The conditional distribution of eachθj

θj | µ, σ, τ, y ∼ N
(
θ̂j ,Vθj

)
where,

θ̂j =
1
τ2µ+

nj

σ2 ȳ.j
1
τ2 +

nj

σ2

Vθj
=

1
1
τ2 +

nj

σ2
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Example: hierarchical normal model

• Posterior

p(θ, µ, log σ, log τ | y) ∝ τ
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
• The conditional distribution of µ

µ | θ, σ, τ, y ∼ N
(
µ̂, τ2/J

)
where,

µ̂ =
1
J

J∑
j=1

θj
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Example: hierarchical normal model

• Posterior

p(θ, µ, log σ, log τ | y) ∝ τ
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
• The conditional distribution of σ2

σ2 | θ, µ, τ, y ∼ Inv−χ2 (n, σ̂2)
where,

σ̂2 =
1
n

J∑
j=1

nj∑
i=1

(yij − θj )
2
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Example: hierarchical normal model

• Posterior

p(θ, µ, log σ, log τ | y) ∝ τ
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

nj∏
i=1

N
(
yij | θj , σ

2)
• The conditional distribution of τ2

τ2 | θ, µ, σ, y ∼ Inv−χ2 (J − 1, τ̂2)
where,

τ̂2 =
1

J − 1

J∑
j=1

(θj − µ)2
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